
FEDERAL AVIATION ADMINIST
SEPG

IN
T

E
R

FA
C

E
N

E
W

SL
E

TT
E

R
O

F
TH

E
 S

O
FT

W
AR

E
 E

N
G

IN
E

E
RI

N
G
 P

RO
CE

SS
 G

RO
U

P

VO
LU

M
E
 6

, N
U

M
BE

R
1

 �
 F

E
BR

U
AR

Y 1
99

7

MIKE DEWALT SPEAKS

AT HEADQUARTERS

How much would you bet on a
poker hand if you couldn’t see your
cards or any of the other players?
Not much, especially if your safety
depended on the outcome. But what
if you could see two cards? What if
you could see four? This is the
analogy Mike DeWalt used to
illustrate how increasing information
about a software product, particularly
about how it was developed, leads to
greater assurance for its use in
safety-critical systems. For airborne
systems, the FAA uses a standard
designed especially for avionics:
RTCA DO-178B, Software Consid-
erations in Airborne Systems and
Equipment Certification.

Mike is the FAA’s National
Resource Specialist for Software
from Seattle, and he was in Wash-
ington in December to present a day-
long seminar to the FAA on the DO-
178B standard, published in Decem-
ber 1992. If there is anyone who can
make a dry subject interesting and

vital, it is Mike. Besides his
enthusiasm and humor, his briefing
has some whiz-bang graphics that
are really worth seeing.

As Loni Czekalski said in the
introduction, software has become a
leading technology and there are
more and more applications where it
must work correctly and safely.
What assurance does the government
have that the software it acquires
does this? The DO-178B standard is
one model designed to assess a level
of assurance for software. It lets us
see some of the cards in our poker
hand—as many as we are willing to
pay for.

DO-178B emphasizes process,
but does not neglect product at-
tributes. Following it will provide a
probability of assurance that success
criteria for safe software have been
met.

The main points to consider
regarding DO-178B, software errors,
and safety, is that:
• The standard attempts to assure that

whole classes of errors are unlikely.

continued on page 2

CHIEF SCIENTIST PASSES

TORCH TO ART PYSTER

Floyd Hollister’s detail as Chief
Scientist for Software Engineering
has ended with the selection of Dr.
Arthur Pyster as head of the software
engineering improvement team
(SEIT), AIT-5. Dr. Pyster will
continue ongoing initiatives while
bringing a new perspective to improv-
ing the FAA’s software life cycle
management practices and processes.
He will report to Theron Gray, Chief
Information Officer and Director of
the Office of Information Technology
at the Agency. Dr. Hollister will
remain as a consultant to Dr. Pyster
for the next month or so, helping to
ease the transition.

Dr. Pyster brings over 20 years
experience in software technology to
the FAA. Most recently, he was vice
president, chief technical officer, and
chief technologist at the Software
Productivity Consortium (SPC) in
Herndon. He was involved in the
oversight and direction of numerous
programs for the member companies.

He was chief technical officer on a
large, successful DARPA funded
project.

As chairman of the steering
group that manages the enterprise
process improvement collaboration
since 1994, he directed the initiation
of the Systems Engineering Capabil-
ity Maturity Model (SE-CMM) and
the Integrated Product Development
CMM.

continued on page 7

Page PB

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

is published quarterly by SEPG

DOT/FAA/AIT-5
800 Independence Avenue, SW

Washington, DC 20591
t

Chief Scientist for Software Engineer-
ing

Arthur Pyster (202) 267-8020
t

Editor
Norman Simenson (202) 267-7431

t

FAX (202) 267-5080

inter

FACE

• Safety properties are captured in the
requirements and then assured by
applying the objectives.

• DO-178B objectives in and of themselves
are not safety sensitive.

• A best standard would ensure software
safety within the target system, but we
normally compromise by requiring the use
of processes that reduce errors, and by
including safety as part of requirements.

• Proper application of DO-178B requires
knowledgeable people well versed in
sound software engineering principles and
digital hardware, and with extensive and
varied software project experience.

For safety purposes, the regulations
and advisory materials define five levels
of criticality from Catastrophic (aircraft
destroyed with many fatalities) to No
effect (no effect on the operation of the
aircraft). DO-178B defines five corre-
sponding levels of assurance rigor from
A (for catastrophic) to E (for no effect).
With decreasing levels of assurance,
fewer of the DO-178B criteria need to be
satisfied.

 Can DO-178B be used for COTS
systems? No. It is not a standard for
procurement. Without a window into
the system there is no way to match
COTS products to safety levels and
verify the objectives. With a commer-
cial product there is no verification of
the vendors processes—no cards are
shown.

Mike went on to compare and

contrast DO-178B, the Software
Engineering Institute’s Capability
Maturity Model, the International
Standard’s Organization standard 9000,
and other “standards.” Of particular
interest, despite some anecdotal reports
of successful use (from obviously
“successful” users), none of these
standards have any scientific basis, nor
is any in prospect. He particularly
stressed that the standards imposed need
to be matched to needs, there is a
constant danger of over and
underspecification, no other standards
have been shown to provide the reduc-
tion in product uncertainty that DO-
178B provides at delivery, and that there
are, in general, no good or bad stan-
dards—only “different” standards.

Finally, designated safety team
members are needed to establish the
hazard categories of the system failure
conditions. Software knowledgeable
systems engineers must establish the
contribution of software to a failure
condition. The hazard category pro-
vides a requirement for a random
probability of failure and design assur-
ance levels (rigor), i.e., threshold
probabilities, for software and hardware.
Determination of assurance levels are
left to the last. No claims for reliability
measures or safety can be based on
software level. Arbitrary decisions on
software level may be needed (because
of insufficient knowledge). The selec-
tion of appropriate assurance methods
are critical–different assurance methods
involve different risk exposures and
tradeoffs. n

�Mike DeWalt Speaks at Headquarters�
continued from page 1

The FAA Corporate Software
Engineering Process Group (SEPG) is
responsible for improving the pro-
cesses used for the acquisition of
software intensive systems. These
include all processes in the FAA’s new
Acquisition Management System
(AMS), from Mission Analysis to
Service-Life Extension, which pertain
to software intensive systems. They
may be used by customers, suppliers,
managers, engineers, and acquisition
specialists.

There are several reference models
which can be used to provide guidance,
but three models are particularly
relevant to the SEPG’s purpose: the
Capability Maturity Model for Software
(SW-CMM), the Software Acquisition
Capability Maturity Model (SA-CMM),
and the Systems Engineering Capabil-
ity Maturity Model (SE-CMM). These
models cover the different aspects of
the AMS and span the key disciplines
involved.

We have devised an initial com-
bined CMM model to guide our
improvement efforts. This model
merges the 52 process areas of the three
CMMs to derive a streamlined set of 23
combined process areas as candidates
for improvement. It considers the
different architectures of the models
and maps processes to their occurrence
in each phase of the AMS life cycle.

Over the coming months we will
be working to refine and enhance this
integrated “FAA-CMM.” We antici-
pate realizing several advantages from
taking this integrated approach
including:
• better coordination of FAA process

improvement activities by ensuring
processes are defined and improved in an
integrated way involving all relevant
disciplines

• reduction of the number of processes and
practices to be improved

• the ability to follow one unified ap-
proach, yet measure improvement
against all of the models. n

IMPROVING ACQUISITION

OF SOFTWARE INTENSIVE

SYSTEMS
Dr. Linda Ibrahim, AIT-5
Chair, Corporate SEPG

Page 3

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996
©1996 ESA. All rights reserved.

[editor’s note: the following has been severely
abbreviated from the official ESA report as released to
the press. A more complete version, plus comments,
appears on the FAA SEPG Interface Web site.
Bolding has been added to emphasize key findings.]

On 4 June 1996, the maiden flight
of the Ariane 5 launcher ended in a
failure. Only about 40 seconds after
initiation of the flight sequence, at an
altitude of about 3700 m, the launcher
veered off its flight path, broke up and
exploded. Following is a summary of
some of the findings of the independent
Inquiry Board.

The design of the Ariane 5 Inertial
Reference System (SRI) is practically
the same as that used on Ariane 4,
particularly as regards the software,
which has been reused largely unmodi-
fied.

Failure Scenario: The physical
failure was initiated as the result of
extreme rocket motor deflections
commanded by the On-Board Computer
(OBC) software on the basis of data
transmitted by the active Inertial
Reference System (SRI 2). Part of these
data at that time did not contain
proper flight data, but showed an
error code from SRI 2, which was
interpreted as flight data. [editor’s note:
this shows a failure of proper containment. High
integrity software is supposed to be designed to isolate
and contain errors, not exacerbate and propagate them.
The consequences reveal a fatal flaw in the design of
the SRI or OBC software, or both.]

The reason why the active SRI 2
did not send correct attitude data was
that the unit had declared a failure due
to a software exception. The OBC
could not switch to the back-up SRI 1
because that unit had already ceased
to function for the same reason as SRI
2. [editor’s note: so much for using duplicate
software as part of a backup.]

The internal SRI software excep-
tion was caused by an overflow during
execution of a data conversion from 64-
bit floating point to 16-bit signed
integer value. This resulted in an
Operand Error.
[editor’s note: down converting from a floating
point number to a signed integer should always
raise a red warning flag—it is an extraordinarily
risky thing to do. Putting an error code on a data
bus should have raised another red flag.]

ARIANE 5 - WHY

DUPLICATED SOFTWARE

IS NOT REDUNDANT

 The error occurred in a part of the
software that is based on a require-
ment of Ariane 4 and is not required
for Ariane 5. The error occurred due
to an unexpectedly high value because
the early part of the trajectory of
Ariane 5 differs from that of Ariane
4.

Comments on the Failure Sce-
nario: Not all the conversions were
protected because a maximum workload
target of 80% had been set for the SRI
computer [editor’s note: sounds like a problem
with inadequate computer performance was being
“worked around.”] Analysis indicated that
the unprotected conversions were either
physically limited or that there was a
large margin of safety, analysis which
turned out to be faulty. It is important to
note that the decision to protect
certain variables but not others was
taken jointly by project partners at
several contractual levels.

There is no evidence that any
trajectory data were used to analyze the
behavior of the unprotected variables,
and it is even more important to note
that it was jointly agreed not to
include the Ariane 5 trajectory data
in the SRI requirements and specifi-
cation. [editor’s note: clearly, the consequences
of an error in the evaluated variables were also NOT
investigated. No doubt these decisions saved some
minor costs.]

Although the failure was due to
a systematic software design error,
mechanisms can be introduced to
mitigate this type of problem.
There is reason for concern that
a software exception should be
allowed, or even required, to
cause a processor to halt while
handling mission-critical equip-
ment. [editor’s note: this violates a
fundamental precept of high integrity system
design, namely, that systems should “fail
gracefully” — not catastrophically.]
Indeed, the loss of a proper
software function is hazardous
in such a design because the
same software runs in both SRI
units. In the case of Ariane
501, this resulted in the
switch-off of two still healthy
critical units of equipment.

An underlying theme in
the development of Ariane 5 is
the bias towards the mitigation
of random failure. [editor’s note:
see Heisenbugs in the System in the
November, 1996 issue of Interface. The

probability that two identical units will fail at the same
time due to random error is very small, but the
probability that the two units will both fail due to the
same systematic error is near one.] The excep-
tion was detected, but inappropriately
handled because the view had been
taken that software should be consid-
ered correct until it is shown to be at
fault. The Board has reason to believe
that this view is also accepted in other
areas of Ariane 5 software design.
The Board is in favor of the opposite
view, that software should be assumed
to be faulty until applying the cur-
rently accepted best practice methods
can demonstrate that it is correct.

This means that critical software—
in the sense that failure of the software
puts the mission at risk—must be
identified at a very detailed level, that
exceptional behavior must be con-
fined, and that a reasonable back-up
policy must take software failures into
account.

Testing: SRI testing at equipment
level was conducted rigorously, beyond
what was expected for Ariane 5 with
regard to all environmental factors.
However, no test was performed to
verify that the SRI would behave
correctly when being subjected to the
count-down and flight time sequence
and the trajectory of Ariane 5.

A large number of closed-loop
simulations of the complete flight,
simulating ground segment
operation, telemetry flow and
launcher dynamics were run.
Many equipment items were
physically present and exercised
but not the two SRIs, which were
simulated by specially developed
software modules.

The decision NOT to
include the SRIs as part of the
closed-loop simulation tests
was the result of a determina-
tion that the simulation
needed to adequately stimu-
late the gyros and accelerom-
eters of the SRI to the neces-
sary accuracy would prove
very expensive, the basic
design and software of the
SRI had proved itself in the
Ariane 4 and previous
rockets, and the unit tests of
the SRI had been very
extensive (but, as noted,
without the Ariane 5 trajec-
tory data). [editor’s note: these are
essentially the same arguments made for
not performing system test of the mirror
in the Hubble Space Telescope.] n

Page PB

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

SOFTWARE TESTING OF

SAFETY CRITICAL

SYSTEMS – PART 2
by Patrick Brown, MITRE

What caused the Challenger
accident? A failure of an O-ring in one
rocket booster, right? Few of us remem-
ber what the Rogers Commission report
said, but you may recall that the investi-
gation went far beyond O-rings. In the
end, the rings were redesigned and
thoroughly retested. But sweeping
changes resulting from the investigation
rippled throughout NASA, affecting
training, quality assurance, and even
headquarters management. The
importance of safety as the primary
concern was brought home to every
operation within the Shuttle program.

This example illustrates an essential
point about the safety of complex
systems. Safety is a system property,
and systems include not only the
hardware, software and procedures, but
many other factors such as the operators,
maintenance, training, management,
and even corporate policies and atti-
tudes. This article emphasizes processes
for the development of software for
safety-critical systems, especially
testing. The safety of the software,
however, should be understood in the
context of total system safety. There is
no such thing as “safe” or “unsafe”
software, absent a system context.
(Software for nuclear reactor control
cannot cause a core meltdown no matter
how defective, if it is running in a
simulator.) Moreover, software may
result in an unsafe system merely
because it provides confusing informa-
tion to an operator.

Evaluation of system safety begins
with a system safety assessment or
hazard analysis. Any state of the system
which can cause an accident resulting in
injury, loss of life, or economic loss is
identified as a hazard. Each hazard is
assigned potential accident costs and
probabilities, enabling hazards to be
prioritized. A hazard may be an
airplane entering another airplane’s
airspace, or the doors opening on the
wrong side of a Metro train. A hazard
does not inevitably lead to an accident,
but the safety goal is to eliminate,
control, or alert operating personnel to
all identified hazards.

Hazard analysis traces hazardous
states back to prior states in the paths

which can precipitate the hazard. This
analysis may lead to design features
which, suitably modified, will block the
paths to the hazardous state. Hazard
analysis is not a one-time event, but a
continuous process starting with the
system requirements and progressing
through system specification, design,
implementation, test, and maintenance.

Software can be categorized with
respect to the level of safety criticality
for a given set of operations. For
airborne software, the FAA uses five
categories ranging from Level A
(catastrophic failure condition) to Level
E (no effect on aircraft operations).
These are described in RTCA Standard
DO-178B, Software Considerations in
Airborne Systems and Equipment
Certification. Software testing and
approval processes are increasingly
more stringent and thorough for the
higher safety levels.

However, software is never certified
as safe—it is merely approved for use in
safety-critical systems. The approval is
based on a number of criteria which
vastly increase the probability that it
will operate as specified and that the
specifications appear to be hazard free.
Indeed, no system can be certified as
safe—that would require prescience on
the part of the certifyer. At most,
systems can be certified as made safe
against all known and anticipated
hazards.

Testing of software systems,
although necessary, is no sufficient
guarantee of safety. Bugs will always
remain, triggered—perhaps years after a
system has gone into operations—by an
unusual sequence of events, by changes
to the environment, or by changes to
other parts of the system. Requirements
often contain mistakes, generally of
omission, so that even rigorous testing
against a specification cannot always
reveal a problem.

At least one loss of life (and
multiple injury) incident and the recent
destruction of the Ariane 5 rocket can be
blamed on the reuse of old software with
a long history of safe use in a new,
upgraded system. Because of the long
previous history of safe use for the
software in each case, it was inad-
equately tested in the new system—with
very unfortunate results.

Once identification and classifica-
tion of hazards have occurred, various
measures can be taken in the software to
improve system safety. Software design

should so partition components that
safety-critical elements are isolated from
the remaining elements. Strict parti-
tioning may make it practical to apply
formal methods. Safety-critical compo-
nents can be subjected to especially
intensive inspections during develop-
ment and to more intensive testing.
Designs can incorporate interlocks and
other safeguards, such as safety moni-
tors to ensure that a module’s inputs,
outputs, and state parameters remain
within specified bounds.

There have been three general
approaches to dealing with software
errors to ensure safety. First, we need to
get the requirements and code absolutely
correct. Structured programming and
testing, formal methods, and “clean
room” are techniques to do this. For
many reasons, such as missed and/or
constantly evolving requirements, and
increasing system complexity, this has
proved to be extraordinarily difficult.

Second, we can make the software
fault tolerant through redundancy and
auto-diagnostics. This approach offers a
safeguard against both system faults and
software errors, but has not worked as
well as expected. For one thing, fault-
tolerant software is notoriously poor at
detecting errors in the fault-tolerant
software itself—all designers and
programmers tend to make mistakes.
And this will not protect against faulty
assumptions on the part of users,
analysts, designers, or programmers, or
against faulty algorithms or require-
ments. These two approaches may
increase software reliability, but not
necessarily its safety. Reliable software
can behave in reliably unexpected and
unsafe ways.

Despite the limitations of the first
continued on next page

Page 5

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

�Software Testing...� continued from previous
page
two approaches, systems can be made
safe. The third approach to software
safety is specifically to prevent or detect
software states that can result in
hazardous system states. Design
modifications that block paths to a
hazardous state can be built into the
system. Such blocks are normally called
interlocks. In modern systems, hard-
ware interlocks are increasingly being
replaced by “software interlocks.”
Unfortunately, the design and imple-
mentation of proper “software inter-
locks” requires very specialized train-
ing.

It is in this context that software is
called safety-critical, since failure of a
“software interlock” can result in the
occurrence of a hazardous state in the
parent system. Safety-specific testing
must be planned and integrated into the
normal testing process. Not only the
operational requirements must be
tested, but also the safety related
requirements—up to destructive
testing, if necessary.

Beyond the software, the system
design should incorporate judicious use
of hardware interlocks and human

alerting and override capabilities. This
holistic approach is what Nancy
Leveson means by the name of her
book: Safeware: System Safety and
Computers.

Software safety requires the use of
special techniques and disciplined
processes that go well beyond the
standard software engineering practices
used for obtaining quality software.
Safety must permeate the entire system
life cycle. It must be reflected in all
operational and maintenance proce-
dures and documentation. This may
best be ensured by fielding an indepen-
dent system safety subteam at the
inception of every IPT which has
products which require it.

DO-178B was developed as a
standard for avionics software. Histori-
cally, ground systems (other than
ground-to-air voice systems) have been
categorized as “controller aids,” and not
critical for the execution of the primary
mission, air traffic separation. But all
systems have become increasingly
interdependent and all systems have
become increasingly dependent upon
software. As a consequence, the
application of DO-178B, or a successor,
will have to be expanded.

The Voice Switching and Commu-
nications System (VSCS) is a critical
component of the ground-to-air voice
system. It is estimated that the embed-
ded FAA application specific software
runs to 1.5 million source lines of code.
The operating system and other COTS
software adds as much as 13.5 million
source lines of code.

The Plan View Display (PVD)
situation displays used by the control-
lers are generated by software. While
total loss of display may be tolerable
(controllers are trained to be able to
“visualize” their airspace and the
relative position of aircraft within it),
defective software can cause incorrect
information to be displayed. This may
cause controllers to incorrectly visualize
their airspace and allow hazardous
states to occur.

The Wide Area Augmentation
System involves elements located on
the ground, in orbit, and on board
aircraft. How should such a “mixed”
system be approved for operational use?
Ground and airborne system functions
can no longer be kept safely separated
as computers increasingly interoperate
and exchange data. Development and
testing for safety-related software will
have to arrive at a common set of
standards for ground and airborne
applications to ensure the integrity
of the entire system. n

Letter from
the

the same thing as barring the gate!
Most people in the software safety business are

familiar with the Therak-25, a therapeutic x-ray
machine which killed or seriously injured 6 people
before the problem was discovered, correctly
diagnosed, and fixed. There was a bug in the
software. (Well, we expected that, didn’t we?) The
software that had the bug was directly ported,
without change, from the Therak-20. But the
Therak-20 had hardware interlocks which the
Therak-25 replaced with “software interlocks.” In
the Therak-20, the software bug occasionally
manifested itself, but the effects were so minor
(because of the hardware interlocks) that no one
even realized there was a problem. The fact that
“software interlocks” are anything but interlocks
resulted in the tragedy. A little problem of
language.

Which is not to say that software cannot be used
to drive an interlock. In this day and age, such a
prohibition would be foolishly self defeating. But
both the hardware and the software used in an

EDITOR
Careless and improper use of language has been

responsible for more waste of resources, including
death and destruction, than almost any other source.
Until prohibited by law, gasoline tanks labeled as
“empty” (but filled with highly explosive gasoline
vapor) were constantly being exploded by otherwise
scrupulously careful smokers. After all, we all
know that something that is “empty” cannot hurt
us. Don’t we? The deadliness of that equation is as
recent as the ill-fated Valuejet airliner incident,
where obsolete oxygen canisters were mislabeled as
“empty.”

Elsewhere in this issue, we have made the case
that software cannot be the direct cause of any
accident. Software is analogous to thought, and if
the thought were the same as the act, we would all
be in dire circumstances! But if we define an
interlock as a physical device for preventing or
blocking some physical state from being entered,
then the “software interlock” can be as treacherous
as the “empty” gasoline tank or the “empty” oxygen
canister. Issuing instructions to bar the gate is not

interlock must be wholly independent of the
operational system, except for the physical interface
which occurs when the interlock is preventing the
operational system from entering an illegal state.
This includes the processor used to run the software
and any input-output hardware. (Even inputs
should not be shared with the operational system,
except where absolutely necessary and then under
very carefully constrained conditions.) Nor do we
rule out a plethora of software checks embedded in
the operational system and intended to block any
operational path to an illegal state. But the latter
must NOT be called “interlocks.” Any other less
semantically loaded term, such as “software
safeguard,” may be used.

Norm

SOFTWARE INTERLOCKS

ARE...NOT!

Page PB

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

CAN COTS SOFTWARE

BE TRUSTED?
by John Liddiard, IPL, Bath, UK

As high integrity and safety related
systems become increasingly sophisti-
cated, it can be very hard to justify
building standard functionality from
scratch. There are great pressures for
increasing the use of Commercial Off-
the-Shelf (COTS) software, such as
operating systems, graphical user/
windowing interface systems (GUIs),
communications utilities, databases,
software development tools and, most
recently, commercial datasets.

COTS software is packaged as
ready to use, so there is an understand-
able tendency to assume that it is
reliable, easy to use, and well behaved.
But few software product companies
work to the same high development
standards as those which specialize in
high integrity operational systems. It is
simply not cost-effective for the average
product. COTS products are very rarely
certified as high integrity or safe for a
given application.

Moreover, the suppliers of software
products target for as wide a market as
possible. Individual applications
generally use only a fraction of the full
functionality provided. As far as a
given application is concerned, the
unused product functions just add
unnecessary (and risky) complexity.

There is an exquisite relationship
between the money expended on testing
and the tolerance of the average
commercial user for bugs encountered.
The objective is to spend not a single
cent more than necessary to obtain the
largest number of users who will accept
the reliability of the product as mar-
keted. Therefore, the reliability of a
product depends on the nature of the
product, especially on how it is used,
and the impact of bugs on the vendor
(so not all bugs are perceived as equally
serious by vendor and user).

On the positive side, many software
products have been extensively used, by
an enormous range of users as com-
pared to the specially developed
systems, resulting in products which
have achieved considerable maturity.
They can be considered to have been
extensively tested in the field, but not
necessarily in the precise way in which
they may be used in a new system. Nor

are all discovered bugs fixed. Econom-
ics rules. Bugs are fixed which tend to
have a large effect and cost little to fix
or which affect a large number of users.
“Workarounds” are usually provided for
the others.

Ada is the preferred language for
the development of high integrity
systems. It was specifically developed
to support good software engineering
principles and consistent standards of
verification and validation. This has
obvious benefits for system integrity.
Yet most software products are devel-
oped in C or C++, languages which are
positively discouraged by most stan-
dards for the development of safety
related software.

To summarize, COTS software
products are overly complex (because of
excessive functionality), insufficiently
tested, and implemented using inappro-
priate technologies for safety related
systems. But we continue to use them!

It is unlikely that any complex
system can be engineered to be entirely
fault free. Errors will be present in both
the specially developed application
software and in COTS components.
The main difference is that specially
developed software can be constrained
to the functionality required, and
system developers and system procurers
have more control over the processes
used for specially developed software—
especially in the timely correction of
discovered bugs.

Problems with COTS software can
impact the integrity of a system in a
variety of ways. COTS failures may
result in the loss of key functions or
even the entire system. Problems can
cause the system to give unreliable or
incorrect output.

To illustrate, consider just one area
of frequent trouble, dynamic memory
management. Most software products
include mechanisms to allocate and
deallocate memory as required, but
deallocation and/or reclamation is
nearly always imperfect.

Memory can become fragmented or
even permanently “lost.” Over a period
of time, system performance deterio-
rates as a system has to search harder to
find memory available for allocation,
then deteriorates even further as the use
of secondary (disk) virtual memory
escalates. Eventually, a system can
grind to a complete halt due to lack of

free memory. There are operational
systems which have to be re-booted on a
regular basis to recover memory which
has been “leaked” by COTS software.
(On the other hand, there are systems
which rarely see this bug because they
have to be frequently re-booted due to
other problems long before memory
leakage and fragmentation become
significant!)

Similar problems can occur with the
allocation and deallocation of disk
space—for example, creating and
deleting entries in a database. The
difference is that fragmented and
“leaked” disk space are not recovered
when a system is re-booted. There are
operational systems which have to be
partially re-installed on a regular basis
to recover disk space which has been
“leaked” by COTS software.

For these reasons, many standards
for safety related software place a total
prohibition on the use of dynamic
memory allocation which, if rigorously
applied, would preclude the use of many
COTS software products.

It is not just the executable COTS
software which can cause problems.
Extensive data is also available as COTS
products. For example, map data is
frequently procured as a COTS product
for use as part of a larger system
development. Operationally, defective
or incorrect data can be just as big a
problem as errors in executable soft-
ware, an issue which is frequently
overlooked.

The message is that developers need
to take measures to control the risk to
system integrity which may be intro-
duced by the use of software products,
including developing and applying their
own extensive tests to COTS software
and providing comprehensive mecha-
nisms for limiting the potential impact
of COTS failures during operations.

Prior experience of a product
provides essential knowledge of solu-
tions and workarounds for faults in the
product. However, such experience may
only be valid for one version of a
product. A newer and less mature
version may have a completely new set
of problems. This is a particular
problem in safety related systems.
Organizations using such systems must
either allocate disproportionate re-
sources to constantly recertifying the
frequent new COTS versions, or risk

continued on next page

Page 7

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

November 1996

Cost Estimates & Economic Evaluation of
Projects

Software Capability Evaluation Training

Software Project Planning & Tracking with
Delphi Estimation Techniques

The FAA SEPG has developed a training program consisting of the following topics.
Classes are to be offered periodically throughout the year. Please contact your
organization�s SEPG member for schedule and enrollment information or discussion
of your software training needs.

becoming dependent on an increasingly
incompatible, obsolete early version.

Despite problems with COTS
software components, many develop-
ments have led to usable systems. The
operational success of these systems has
shown that there are measures which
can be taken to reduce the risk associ-
ated with COTS components and to
produce reliable systems using COTS
components. But there have also been
unanticipated impacts on cost and time,
both during initial system development
and during later operation and mainte-
nance of the systems.

The use of COTS components to
reduce costs and shorten development
times may be a valid design aim, but
such products must not be allowed to
compromise the integrity of systems.
Would you entrust your life to a com-
mercial off-the-shelf software compo-
nent which averages one failure per
day? Possibly, if you can insure that
failure of such a component will not
compromise system integrity.

The technical background for this article is drawn
from a study into the growing use of COTS software

conducted by IPL on behalf of the National Air
Traffic Services (NATS), part of the UK Civil

Aviation Authority. This article represents the
personal views of the author and is not a statement

of NATS policy or practice.

For further information, contact:
Eveleigh House, Grove Street

Bath, BA1 5LR, U.K.

email: johnl@iplbath.com
Tel: +44 1225 475000
Fax: +44 1225 444400

n

�Can COTS Software Be Trusted?�
continued from previous page

Prior to his ten years at SPC, Dr.
Pyster was involved in pioneering the
use of computers for commercial voice
processing, including a very early voice
mail system. At TRW, he was instru-
mental in launching the effort to build a
standard, high productivity software
engineering environment (SEE). This
effort served as the basis for later work
by others elsewhere in industry. He has
been involved with hard real-time
software for safety-critical systems, such
as nuclear reactor control.

Dr. Pyster is a Senior Member of
IEEE and a Distinguished Alumnus of
the Engineering College of Ohio State
University, where he earned his
Ph.D. in Computer and Information
Sciences. n

�FLASH! Art Pyster replaces Floyd Hollister
FLASH!� continued from page 1

Halfway through a huge training
exercise in Florida in March of 1995,
using the Contingency Theatre Auto-
mated Planning System (CTAPS), Air
Force operators found they could not
open a crucial application. As part of a
joint service exercise, based on a
hypothetical conflict in the Persian
Gulf, users were rushing to complete
an air tasking order in the morning of
March 21 involving detailed flight
plans for 2700 simulated aircraft
sorties. Desparate calls to CTAPS
operators at Air Force bases across the
country quickly proved that the lockout
was systemwide.

The problem was not isolated and
fixed (using the Internet to distribute
the software fix) until fourteen frantic
hours later. The trouble was traced to a
COTS text editor embedded deep within
CTAPS, used for cutting and pasting
text into CTAPS as the air tasking order
is built. The COTS editor contained an
automated “license manager” which
had mistakenly been set to shut it down
at the end of two years instead of
twenty. The text editor had never been
considered “critical,” since CTAPS does
not need the editor to run, but the
operators had no other immediate
means of manipulating text.

Editor’s Note: A full report of the
above incident, by Paul Constance,
GCN staff, appears in the July 8, 1996
issue of Government Computer News.
n

WHAT IF IT HAPPENED

DURING DESERT STORM?

Art Pyster AIT-5
 Chief Scientist for
 Software Engineering
Linda Ibrahim AIT-5
 SEPG Chairperson
Tanae Gilmore SETA
 SEPG Secretary
Rebecca Deloney AOS-1
Rob Hanes AUA-200
Bob Laws ASU-250
Tom Marker ASU-250
Tom Pearson AND-630
Natalie Reed ACT-24
Ross Ridgeway AMI-1
Art Saloman ASD-130
Raghu Singh AIR-200
Cindy King Skiles AUA-7
Tom Skiles ATR-300
Marie Stella AND-8
Rebecca Taylor ASD-420

FAA SOFTWARE ENGINEERING
PROCESS GROUP

Practical Software Measurement (PSM)

Software Development Cost and Schedule
Estimation

SLIMTra
ini

ng

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Op
po

rtu
nit

ies
...

FEDERAL AVIATION ADMINISTRATION
SEPG

interFACE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

In This Issue

1
 Chief Scientist Passes Torch to

Art Pyster

1
Mike DeWalt Speaks at Headquarters

2
Improving Acquisition of Software

Intensive Systems

3
Ariane 5 - Why Duplicated Software

is NOT Redundant

4
Software Testing of Safety Critical

Systems – Part 2

5
Letter from the Editor:

Software Interlocks are...NOT!

6
Can COTS Software Be Trusted?

7
What If It Happened During

Desert Storm?

NEWSLETTER OF THE

SOFTWARE ENGINEERING

PROCESS GROUP

�

VOLUME 6, NUMBER 1
FEBRUARY 1997

CONFERENCE CALENDAR
Software Engineering Institute (SEI)
Software Engineering Process Group Conference
March 17 - 20, 1997
San Jose, CA
Registration: (412) 268-7388

SEI Conference on Risk Management
April 7- 9, 1997
Virginia Beach, VA
Registration: (412) 268-7388

Software Technology Conference
April 27 - May 2
Contact: (801) 521-9055 or (801) 521-2822

The Software Engineering Symposium
August 25 - 28, 1997
Pittsburgh, PA
Registration: (412) 268-7388

Air Traffic Control Association
September 28 - October 3, 1997
Washington, DC

Federal Software Process Improvement Working Group (FEDSPIWG)
Held Monthly at NOAA
Contact: Martha Morphy at NOAA (301) 713-3345

DOT/FAA/AIT-5
800 INDEPENDENCE AVENUE, SW
WASHINGTON, DC 20591

